142 research outputs found

    Reply to Comment on 'Unintentional unfairness when applying new greenhouse gas emissions metrics at country level'

    Get PDF
    This is a companion article to 2021 Environ. Res. Lett. 16 068001 This is a companion article to 2019 Environ. Res. Lett. 14 114039H2020 Societal Challengeshttp://dx.doi.org/10.13039/100010676Peer Reviewe

    Natural Climate Solutions must embrace multiple perspectives to ensure synergy with sustainable development

    Get PDF
    To limit global warming to well below 2°C, immediate emissions reductions must be coupled with active removal of greenhouse gases from the atmosphere. “Natural Climate Solutions” (NCS) achieve atmospheric CO2 reduction through the conservation, restoration, or altered management of natural ecosystems, with enormous potential to deliver “win-win-win” outcomes for climate, nature and society. Yet the supply of high-quality NCS projects does not meet market demand, and projects already underway often fail to deliver their promised benefits, due to a complex set of interacting ecological, social, and financial constraints. How can these cross-sectoral challenges be surmounted? Here we draw from expert elicitation surveys and workshops with professionals across the ecological, sociological, and economic sciences, evaluating differing perspectives on NCS, and suggesting how these might be integrated to address urgent environmental challenges. We demonstrate that funders” perceptions of operational, political, and regulatory risk strongly shape the kinds of NCS projects that are implemented, and the locations where they occur. Because of this, greenhouse gas removal through NCS may fall far short of technical potential. Moreover, socioecological co-benefits of NCS are unlikely to be realized unless the local communities engaged with these projects are granted ownership over implementation and outcomes

    Path independence of carbon budgets when meeting a stringent global mean temperature target after an overshoot

    Get PDF
    Emission pathways that are consistent with meeting the Paris Agreement goal of holding global mean temperature rise well below 2 °C often assume a temperature overshoot. In such overshoot scenarios, a given temperature limit is first exceeded and later returned to, under the assumption of large‐scale deliberate carbon dioxide removal from the atmosphere. Here we show that although such strategy might result in a reversal of global mean temperature, the carbon cycle exhibits path dependence. After an overshoot, more carbon is stored in the ocean and less on land compared to a scenario with the same cumulative CO2 emissions but no overshoot. The near‐path independence of surface air temperature arises despite the path dependence in the carbon cycle, as it is offset by path dependence in the thermal response of the ocean. Such behavior has important implications for carbon budgets (i.e. the total amount of CO2 emissions consistent with holding warming to a given level), which do not differ much among scenarios that entail different levels of overshoot. Therefore, the concept of a carbon budget remains robust for scenarios with low levels of overshoot (up to 300 Pg C overshoot considered here) but should be used with caution for higher levels of overshoot, particularly for limiting the environmental change in dimensions other than global mean temperature rise

    Geosciences after Paris

    Get PDF
    The adoption of the Paris Agreement is a historic milestone for the global response to the threat of climate change. Scientists are now being challenged to investigate a 1.5 degrees C world - which will require an accelerated effort from the geoscience community

    The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century

    Get PDF
    AbstractStudies of global environmental change make extensive use of scenarios to explore how the future can evolve under a consistent set of assumptions. The recently developed Shared Socioeconomic Pathways (SSPs) create a framework for the study of climate-related scenario outcomes. Their five narratives span a wide range of worlds that vary in their challenges for climate change mitigation and adaptation. Here we provide background on the quantification that has been selected to serve as the reference, or ‘marker’, implementation for SSP2. The SSP2 narrative describes a middle-of-the-road development in the mitigation and adaptation challenges space. We explain how the narrative has been translated into quantitative assumptions in the IIASA Integrated Assessment Modelling Framework. We show that our SSP2 marker implementation occupies a central position for key metrics along the mitigation and adaptation challenge dimensions. For many dimensions the SSP2 marker implementation also reflects an extension of the historical experience, particularly in terms of carbon and energy intensity improvements in its baseline. This leads to a steady emissions increase over the 21st century, with projected end-of-century warming nearing 4°C relative to preindustrial levels. On the other hand, SSP2 also shows that global-mean temperature increase can be limited to below 2°C, pending stringent climate policies throughout the world. The added value of the SSP2 marker implementation for the wider scientific community is that it can serve as a starting point to further explore integrated solutions for achieving multiple societal objectives in light of the climate adaptation and mitigation challenges that society could face over the 21st century
    • 

    corecore